Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.413
Filtrar
1.
J Mol Biol ; 436(1): 168372, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979908

RESUMO

Brca1 mouse models were first reported in the mid-1990's shortly after cloning the human gene. Since then, many mouse models with a range of mutations have been generated, some mimic patient mutations, others are designed to probe specific protein domains and functions. In this review, we discuss early and recent studies using engineered Brca1 mouse alleles, and their implications for understanding Brca1 protein function in the context of DNA repair, tumorigenesis, and anti-cancer therapeutics.


Assuntos
Proteína BRCA1 , Neoplasias Experimentais , Animais , Humanos , Camundongos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Reparo do DNA , Mutação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética
2.
FASEB J ; 36(10): e22560, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36165236

RESUMO

Angiogenesis inhibitor drugs targeting vascular endothelial growth factor (VEGF) signaling to the endothelial cell (EC) are used to treat various cancer types. However, primary or secondary resistance to therapy is common. Clinical and pre-clinical studies suggest that alternative pro-angiogenic factors are upregulated after VEGF pathway inhibition. Therefore, identification of alternative pro-angiogenic pathway(s) is critical for the development of more effective anti-angiogenic therapy. Here we study the role of apelin as a pro-angiogenic G-protein-coupled receptor ligand in tumor growth and angiogenesis. We found that loss of apelin in mice delayed the primary tumor growth of Lewis lung carcinoma 1 and B16F10 melanoma when combined with the VEGF receptor tyrosine kinase inhibitor, sunitinib. Targeting apelin in combination with sunitinib markedly reduced the tumor vessel density, and decreased microvessel remodeling. Apelin loss reduced angiogenic sprouting and tip cell marker gene expression in comparison to the sunitinib-alone-treated mice. Single-cell RNA sequencing of tumor EC demonstrated that the loss of apelin prevented EC tip cell differentiation. Thus, apelin is a potent pro-angiogenic cue that supports initiation of tumor neovascularization. Together, our data suggest that targeting apelin may be useful as adjuvant therapy in combination with VEGF signaling inhibition to inhibit the growth of advanced tumors.


Assuntos
Neoplasias Experimentais , Neoplasias , Inibidores da Angiogênese/farmacologia , Animais , Apelina , Ligantes , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Fatores de Crescimento do Endotélio Vascular , Sunitinibe/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/uso terapêutico
3.
Mol Cancer Ther ; 21(11): 1632-1644, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36121385

RESUMO

CCAAT/enhancer binding protein ß (C/EBPß) is a basic leucine zipper (bZIP) family transcription factor, which is upregulated or overactivated in many cancers, resulting in a gene expression profile that drives oncogenesis. C/EBPß dimerization regulates binding to DNA at the canonical TTGCGCAA motif and subsequent transcriptional activity, suggesting that disruption of dimerization represents a powerful approach to inhibit this previously "undruggable" oncogenic target. Here we describe the mechanism of action and antitumor activity of ST101, a novel and selective peptide antagonist of C/EBPß that is currently in clinical evaluation in patients with advanced solid tumors. ST101 binds the leucine zipper domain of C/EBPß, preventing its dimerization and enhancing ubiquitin-proteasome dependent C/EBPß degradation. ST101 exposure attenuates transcription of C/EBPß target genes, including a significant decrease in expression of survival, transcription factors, and cell-cycle-related proteins. The result of ST101 exposure is potent, tumor-specific in vitro cytotoxic activity in cancer cell lines including glioblastoma, breast, melanoma, prostate, and lung cancer, whereas normal human immune and epithelial cells are not impacted. Further, in mouse xenograft models ST101 exposure results in potent tumor growth inhibition or regression, both as a single agent and in combination studies. These data provide the First Disclosure of ST101, and support continued clinical development of ST101 as a novel strategy for targeting C/EBPß-dependent cancers.


Assuntos
Antineoplásicos , Proteína beta Intensificadora de Ligação a CCAAT , Animais , Humanos , Camundongos , Proteína beta Intensificadora de Ligação a CCAAT/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Ligação Proteica , Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico
4.
Vestn Oftalmol ; 138(4): 6-14, 2022.
Artigo em Russo | MEDLINE | ID: mdl-36004585

RESUMO

Eyelid tumors are the most common neoplasms in everyday ophthalmic practice and cover a wide range of benign and malignant lesions. Surgical methods, cryodestruction, laser therapy and radiation therapy are used in the treatment of malignant eyelid tumors. Chemotherapy does not occupy a prominent place in the treatment of malignant eyelid tumors, its use is limited to sensitive tumors. OBJECTIVE: To assess the antitumor activity of the Russian-developed chemical compound 2-[3-(2-chloroethyl)-3-nitrosoureido]-1.3-propandiol (chlonisol) on the models of transplantable tumors of various histogenesis implanted into the lower eyelid. MATERIAL AND METHODS: The study was carried out on 67 mice of lines 129/SN, BALB/c and C57BL/6 that had Ehrlich carcinoma, sarcoma 37, lymphosarcoma LIO-1 and B16 melanoma transplanted into the eyelid. Tumor transplantation was done by injecting 0.05 ml of sterile sodium chloride solution containing 106 cells of Ehrlich carcinoma, sarcoma 37, lymphosarcoma LIO-1, or 10% suspension of tumor tissue of B16 melanoma. The injection was performed into the right lower eyelid in the direction from the outer towards the inner corner of the eye using a thin needle (29G). Chlonisol was administered at the maximum tolerated dose of 20 mg/kg or at the lower dose of 15 mg/kg intraperitoneally 24 hours after tumor transplantation. RESULTS: In mice with Ehrlich carcinoma, sarcoma 37, lymphosarcoma LIO-1 and melanoma B16 transplanted under the skin of the lower eyelid, a single intraperitoneal injection of chlonisol at the dose of 20 or 15 mg/kg caused significant inhibition of tumor growth reaching 100%. Chlonisol significantly increased overall survival in animals with Ehrlich carcinoma (log rank test, p=0.0464), sarcoma 37 (log rank test, p<0.0001), lymphosarcoma LIO-1 (log rank test, p=0.0122) and B16 melanoma (log rank test, p<0.0001); the proportion of animals that were fully healed was 25, 78, 67 and 25%, respectively. CONCLUSION: Chlonisol has a pronounced antitumor effect in mice with Ehrlich carcinoma, sarcoma 37, lymphosarcoma LIO-1 and B16 melanoma transplanted into the eyelid.


Assuntos
Carcinoma , Neoplasias Palpebrais , Linfoma não Hodgkin , Melanoma Experimental , Neoplasias Experimentais , Sarcoma 37 , Animais , Neoplasias Palpebrais/diagnóstico , Neoplasias Palpebrais/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico
5.
Molecules ; 27(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889444

RESUMO

Cancer is a leading cause of mortality globally. Despite remarkable improvements in cancer-treatment approaches, disease recurrence and progression remain major obstacles to therapy. While chemotherapy is still a first-line treatment for a variety of cancers, the focus has shifted to the development and application of new approaches to therapy. Nevertheless, the relationship between immune response, neoplastic diseases and treatment efficiency is not fully understood. Therefore, the aim of the study was to investigate the immunopharmacological effects of methacrylic acid homopolymer in an in vivo tumor model. MATERIALS AND METHODS: Monomeric methacrylic acid was used to synthesize polymers. Methacrylic acid was polymerized in dioxane in the presence of 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid. To study the molecular weight characteristics of PMAA by GPC, carboxyl groups were preliminarily methylated with diazomethane. An experimental cancer model was obtained by grafting RMK1 breast cancer cells. The serum levels of IL-6, IL-10, IL-17, transforming growth factor ß1 (TGF-ß1), and tumor necrosis factor α (TNF-α) were measured by ELISA. RESULTS: The effect of PMAA on the serum concentrations of several cytokines was studied upon its single administration to laboratory animals in early neoplastic process. The IL-6, IL-17 and TGF-ß1 concentrations were found to change significantly and reach the level observed in intact rats. The IL-10 concentration tended to normalize. CONCLUSION: The positive results obtained are the basis for further studies on the effect of methacrylic-acid polymers with different molecular-weight characteristics on the neoplastic process.


Assuntos
Citocinas , Neoplasias Experimentais , Ácidos Polimetacrílicos , Animais , Interleucina-10 , Interleucina-17 , Interleucina-6 , Neoplasias Experimentais/tratamento farmacológico , Poli A , Polímeros , Ácidos Polimetacrílicos/farmacologia , Ratos , Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa
6.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269594

RESUMO

The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG. Glyoxalase 1 (Glo1) of the glyoxalase system has a major role in the metabolism of MG. Small molecule inducers of Glo1, Glo1 inducers, have been developed to alleviate dicarbonyl stress as a prospective treatment for the prevention and early-stage reversal of type 2 diabetes and prevention of vascular complications of diabetes. The first clinical trial with the Glo1 inducer, trans-resveratrol and hesperetin combination (tRES-HESP)-a randomized, double-blind, placebo-controlled crossover phase 2A study for correction of insulin resistance in overweight and obese subjects, was completed successfully. tRES-HESP corrected insulin resistance, improved dysglycemia, and low-grade inflammation. Cell permeable Glo1 inhibitor prodrugs have been developed to induce severe dicarbonyl stress as a prospective treatment for cancer-particularly for high Glo1 expressing-related multidrug-resistant tumors. The prototype Glo1 inhibitor is prodrug S-p-bromobenzylglutathione cyclopentyl diester (BBGD). It has antitumor activity in vitro and in tumor-bearing mice in vivo. In the National Cancer Institute human tumor cell line screen, BBGD was most active against the glioblastoma SNB-19 cell line. Recently, potent antitumor activity was found in glioblastoma multiforme tumor-bearing mice. High Glo1 expression is a negative survival factor in chemotherapy of breast cancer where adjunct therapy with a Glo1 inhibitor may improve treatment outcomes. BBGD has not yet been evaluated clinically. Glycation by MG now appears to be a pathogenic process that may be pharmacologically manipulated for therapeutic outcomes of potentially important clinical impact.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Glutationa/análogos & derivados , Hesperidina/uso terapêutico , Lactoilglutationa Liase/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Resveratrol/uso terapêutico , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Quimioterapia Combinada , Indução Enzimática/efeitos dos fármacos , Glutationa/química , Glutationa/uso terapêutico , Glicosilação/efeitos dos fármacos , Hesperidina/química , Humanos , Resistência à Insulina/fisiologia , Lactoilglutationa Liase/antagonistas & inibidores , Camundongos , Estrutura Molecular , Neoplasias Experimentais/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/fisiopatologia , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo , Resveratrol/química
7.
Commun Biol ; 5(1): 106, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115660

RESUMO

Oncolytic viruses are being tested in clinical trials, including in women with ovarian cancer. We use a drug-repurposing approach to identify existing drugs that enhance the activity of oncolytic adenoviruses. This reveals that carvedilol, a ß-arrestin-biased ß-blocker, synergises with both wild-type adenovirus and the E1A-CR2-deleted oncolytic adenovirus, dl922-947. Synergy is not due to ß-adrenergic blockade but is dependent on ß-arrestins and is reversed by ß-arrestin CRISPR gene editing. Co-treatment with dl922-947 and carvedilol causes increased viral DNA replication, greater viral protein expression and higher titres of infectious viral particles. Carvedilol also enhances viral efficacy in orthotopic, intraperitoneal murine models, achieving more rapid tumour clearance than virus alone. Increased anti-cancer activity is associated with an intratumoural inflammatory cell infiltrate and systemic cytokine release. In summary, carvedilol augments the activity of oncolytic adenoviruses via ß-arrestins to re-wire cytokine networks and innate immunity and could therefore improve oncolytic viruses for cancer patient treatment.


Assuntos
Adenoviridae , Carvedilol/farmacologia , Imunidade Inata , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas/terapia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Animais , Carvedilol/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Arrestinas/metabolismo
8.
J Enzyme Inhib Med Chem ; 37(1): 728-742, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35176963

RESUMO

The linking of ethacrynic acid with ethylenediamine and 1,4-butanediamine gave EDEA and BDEA, respectively, as membrane-permeable divalent pro-inhibitors of glutathione S-transferase (GST). Their divalent glutathione conjugates showed subnanomolar inhibition and divalence-binding to GSTmu (GSTM) (PDB: 5HWL) at ∼0.35 min-1. In cisplatin-resistant SK-OV-3, COC1, SGC7901 and A549 cells, GSTM activities probed by 15 nM BDEA or EDEA revealed 5-fold and 1.0-fold increases in cisplatin-resistant SK-OV-3 and COC1 cells, respectively, in comparison with the susceptible parental cells. Being tolerable by HEK293 and LO2 cells, BDEA at 0.2 µM sensitised resistant SK-OV-3 and COC1 cells by ∼3- and ∼5-folds, respectively, released cytochrome c and increased apoptosis; EDEA at 1.0 µM sensitised resistant SK-OV-3 and A549 cells by ∼5- and ∼7-fold, respectively. EDEA at 1.7 µg/g sensitised resistant SK-OV-3 cells to cisplatin at 3.3 µg/g in nude mouse xenograft model. BDEA and EDEA are promising leads for probing cellular GSTM and sensitising cisplatin-resistant ovarian cancers.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Ácido Etacrínico/farmacologia , Etilenodiaminas/farmacologia , Glutationa Transferase/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Putrescina/farmacologia , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Etacrínico/química , Etilenodiaminas/química , Feminino , Glutationa Transferase/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Putrescina/química , Relação Estrutura-Atividade
9.
J Enzyme Inhib Med Chem ; 37(1): 652-665, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35109719

RESUMO

The screened compound DYT-1 from our in-house library was taken as a lead (inhibiting tubulin polymerisation: IC50=25.6 µM, anti-angiogenesis in Zebrafish: IC50=38.4 µM, anti-proliferation against K562 and Jurkat: IC50=6.2 and 7.9 µM, respectively). Further investigation of medicinal chemistry conditions yielded compound 29e (inhibiting tubulin polymerisation: IC50=4.8 µM and anti-angiogenesis in Zebrafish: IC50=3.6 µM) based on tubulin and zebrafish assays, which displayed noteworthily nanomolar potency against a variety of leukaemia cell lines (IC50= 0.09-1.22 µM), especially K562 cells where apoptosis was induced. Molecular docking, molecular dynamics (MD) simulation, radioligand binding assay and cellular microtubule networks disruption results showed that 29e stably binds to the tubulin colchicine site. 29e significantly inhibited HUVEC tube formation, migration and invasion in vitro. Anti-angiogenesis in vivo was confirmed by zebrafish xenograft. 29e also prominently blocked K562 cell proliferation and metastasis in blood vessels and surrounding tissues of the zebrafish xenograft model. Together with promising physicochemical property and metabolic stability, 29e could be considered an effective anti-angiogenesis and -leukaemia drug candidate that binds to the tubulin colchicine site.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Colchicina/antagonistas & inibidores , Indóis/farmacologia , Neovascularização Patológica/tratamento farmacológico , Moduladores de Tubulina/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colchicina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Peixe-Zebra
10.
Dalton Trans ; 51(11): 4423-4428, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35195131

RESUMO

Metal phosphides have been proved to be potential theranostic agents of tumors. However, the limitations of single-modal imaging or the treatment effect of such materials need to be further improved. Here, we successfully prepared polyvinylpyrrolidone-modified bimetallic nickel cobalt phosphide (NiCoP/PVP) nanoparticles as a theranostic agent of tumors. Owing to the different types of magnetic properties of Ni and Co components, T1- and T2-weighted magnetic resonance imaging (MRI) could be simultaneously achieved to compensate the low accuracy brought about by single-modal MRI. In addition, NiCoP/PVP possesses excellent photothermal properties owing to its obvious absorption in the near-infrared (NIR) region, which endows NiCoP/PVP with high photothermal conversion efficiency (PCE) to serve as a photothermal agent for tumor ablation. Therefore, NiCoP/PVP is a promising theranostic agent for accurate diagnosis and effective treatment of tumors.


Assuntos
Antineoplásicos/farmacologia , Imageamento por Ressonância Magnética , Compostos Organometálicos/farmacologia , Fototerapia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Raios Infravermelhos , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Níquel/química , Níquel/farmacologia , Imagem Óptica , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Tamanho da Partícula , Fosfinas/química , Fosfinas/farmacologia , Povidona/química , Povidona/farmacologia , Nanomedicina Teranóstica
11.
Theranostics ; 12(2): 747-766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976211

RESUMO

Background: Immune checkpoint inhibitors (ICIs), such as programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1), have been widely applied in clinical and scientific research. Despite their effective antitumor effects in clinical tumor therapy, most tumors are still resistant to ICIs and long-term benefits are lacking. In addition, tumor patients complicated with interstitial lung disease limit the application of ICI therapy. Therefore, for these cases, there is an urgent need to develop new methods to relieve lung complications and enhance the efficacy of ICI therapy. Nintedanib, a potent triple angiokinase inhibitor approved for the treatment of progressive fibrotic interstitial lung disease. However, its immunotherapy synergy properties and mechanism are still pending further exploration. Methods: To explore the therapeutic potential of nintedanib and αPD-L1 combination therapy, MC38, LLC, and 4T1 tumor models were used to investigate antitumor and antimetastatic activities in vivo. An idiopathic pulmonary fibrosis-tumor bearing model was used to evaluate the effect of the synergy therapy on tumor model complicated with lung disease. Moreover, RNA-seq, immunohistochemistry, and flow cytometry were utilized to analyze the effect of combination treatment on the tumor microenvironment. The bioactivity following different treatments was determined by western blotting, CCK-8, and flow cytometry. Results: In this study, nintedanib and αPD-L1 synergy therapy exhibited significant antitumor, antimetastatic and anti-pulmonary fibrosis effects. Both in vitro and in vivo experiments revealed that these effects included promoting vessel normalization, increasing infiltration and activation of immune cells in tumors, enhancing the response of interferon-gamma, and activating the MHC class I-mediated antigen presentation process. Moreover, our results showed an increased expression of PD-L1 and promoted phosphorylation of STAT3 after nintedanib (1 µM) treatment. Conclusion: The combination of nintedanib and αPD-L1 increased ICI therapy responses, relieved lung complications and further activated the tumor immune microenvironment; thus, exhibiting a notable antitumor effect. Accordingly, the nintedanib synergy strategy is expected to be a promising candidate therapy for tumor patients complicated with interstitial lung disease in clinical practice.


Assuntos
Anticorpos/farmacologia , Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Indóis/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Metástase Neoplásica/prevenção & controle , Transplante de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Regulação para Cima
12.
Carbohydr Polym ; 278: 118941, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973759

RESUMO

Self-assembled microparticles from chitosan (SAMC) was prepared by depolymerization induced by potassium persulfate. Particle size distribution data showed averaged around 5 µm size and SEM indicated the sequential formation of "RBC" shaped particles. Soluble SAMC consists of 'deacetylated' residues as revealed by 13C NMR. SAMC showed antitumor efficacy in human breast cancer cell lines through mitigation in cell proliferation, colony formation and cell migration. Anti-tumor and anti-angiogenic properties of SAMC was found in vivo Ehrlich ascites tumor (EAT) bearing mice model resulting in tumor growth inhibition (EAT control, 17.4 ml; SAMC treated, 6.8 ml) and improved survival potency (15 days). Moreover, the decrease in ascites VEGF secretion (EAT control, 1354 ng; SAMC treated, 351 ng) accompanied with reduction in neovessel formation. Apoptosis induction by SAMC was confirmed by DNA fragmentation, caspase activities and fluorescence staining methods respectively. SAMC may be a safe candidate for anti-tumor dietary supplement production in food industry.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Ehrlich/tratamento farmacológico , Quitosana/farmacologia , Neovascularização Patológica/tratamento farmacológico , Animais , Configuração de Carboidratos , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quitosana/síntese química , Quitosana/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/patologia
13.
ACS Appl Mater Interfaces ; 14(3): 3809-3824, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015499

RESUMO

The local hyperthermia (>41 °C) effect of photothermal therapy (PTT) is significantly limited by the efficiency of PTT agents to convert laser energy to heat, and such oncotherapy, similar to conventional chemotherapy, invariably encounters the challenge of nonspecific application. Undue reliance on oxygen sources still poses particular difficulties in photodynamic therapy (PDT) for deep-level clinical applications. Considering these therapeutic issues, in this study, we constructed a versatile but unique nanosystem by encapsulating Au nanosheets in codoped gadolinium oxyfluoride (GdOF):Yb,Er spheres, followed by decoration of a chemotherapeutic drug (doxorubicin), photosensitizer (rose Bengal, RB), and targeted agent (folic acid). This allowed the incorporation of cancer treatment and real-time curative efficacy monitoring into one single theranostic nanoplatform. Benefiting from the dual contribution of the strong absorptions in the NIR-I and NIR-II regions, relevant photothermal-conversion efficiency (η) values pertaining to that final product were 39.2% at 1064 nm irradiation and 35.7% at 980 nm illumination. The fluorescence resonance energy transfer that occurred in the up-converted GdOF:Yb,Er to RB contributed to the high PDT efficacy. Combined with a micromeric acid-responsive drug release in a targeted tumor microenvironment, high-performance synergistic therapy was realized. In addition, up-conversion fluorescence imaging and computed tomography imaging accompanied by multimodal magnetic resonance imaging were simultaneously achieved owing to the doped lanthanide ions and the encapsulated Au nanosheets. Our designed oncotherapy nanosystem provides an alternative strategy to acquire ideal theranostic effects.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Doxorrubicina/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Fármacos Fotossensibilizantes/farmacologia , Nanomedicina Teranóstica , Animais , Antibióticos Antineoplásicos/química , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Érbio/química , Érbio/farmacologia , Feminino , Flúor/química , Flúor/farmacologia , Gadolínio/química , Gadolínio/farmacologia , Células HeLa , Humanos , Raios Infravermelhos , Teste de Materiais , Camundongos , Camundongos Endogâmicos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Imagem Óptica , Óxidos/química , Óxidos/farmacologia , Fármacos Fotossensibilizantes/química , Microambiente Tumoral/efeitos dos fármacos , Itérbio/química , Itérbio/farmacologia
14.
J Enzyme Inhib Med Chem ; 37(1): 379-385, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35012394

RESUMO

Elemene is a second-line broad-spectrum anti-tumour drug that has been used in China for more than two decades. However, its main anti-tumour ingredient, ß-elemene, has disadvantages, including excessive lipophilicity and relatively weak anti-tumour efficacy. To improve the anti-tumour activity of ß-elemene, based on its minor molecular weight character, we introduced furoxan nitric oxide (NO) donors into the ß-elemene structure and designed six series of new generation ß-elemene NO donor hybrids. The synthesised compounds could effectively release NO in vitro, displayed significant anti-proliferative effects on U87MG, NCI-H520, and SW620 cell lines. In the orthotopic glioma model, compound Id significantly and continuously suppressed the growth of gliomas in nude mice, and the brain glioma of the treatment group was markedly inhibited (>90%). In short, the structural fusion design of NO donor and ß-elemene is a feasible strategy to improve the in vivo anti-tumour activity of ß-elemene.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Óxido Nítrico/farmacologia , Oxidiazóis/farmacologia , Sesquiterpenos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/patologia , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Óxido Nítrico/síntese química , Óxido Nítrico/química , Oxidiazóis/síntese química , Oxidiazóis/química , Sesquiterpenos/síntese química , Sesquiterpenos/química , Relação Estrutura-Atividade
15.
Aging (Albany NY) ; 14(1): 297-315, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022331

RESUMO

5-Fluorouracil (5-Fu) is the first-line chemotherapeutic option for colorectal cancer. However, its efficacy is inhibited by drug resistance. Cytokines play an important role in tumor drug resistance, even though their mechanisms are largely unknown. Using a cytokine array, we established that tissue inhibitor metalloproteinase 2 (TIMP-2) is highly expressed in 5-Fu resistant colorectal cancer patients. Analysis of samples from 84 patients showed that elevated TIMP-2 expression levels in colorectal patients were correlated with poor prognostic outcomes. In a 5-Fu-resistant patient-derived xenograft (PDX) model, TIMP-2 was also found to be highly expressed. We established an autocrine mechanism through which elevated TIMP-2 protein levels sustained colorectal cancer cell resistance to 5-Fu by constitutively activating the ERK/MAPK signaling pathway. Inhibition of TIMP-2 using an anti-TIMP-2 antibody or ERK/MAPK inhibition by U0126 suppressed TIMP-2 mediated 5-Fu-resistance in CRC patients. In conclusion, a novel TIMP-2-ERK/MAPK mediated 5-Fu resistance mechanism is involved in colorectal cancer. Therefore, targeting TIMP-2 or ERK/MAPK may provide a new strategy to overcome 5-Fu resistance in colorectal cancer chemotherapy.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fluoruracila/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Idoso , Animais , Butadienos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Experimentais/tratamento farmacológico , Nitrilas/farmacologia , Inibidor Tecidual de Metaloproteinase-2/genética , Transcriptoma , Adulto Jovem
16.
ACS Appl Mater Interfaces ; 14(2): 2650-2662, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34995459

RESUMO

Smart nanotheranostic systems (SNSs) have attracted extensive attention in antitumor therapy. Nevertheless, constructing SNSs with disease diagnosis ability, improved drug delivery efficiency, inherent imaging performance, and high treatment efficiency remains a scientific challenge. Herein, ultrasmall tin dioxide (SnO2) was assembled with upconversion nanoparticles (UCNPs) to form mesoporous nanocapsules by an in situ hydrothermal deposition method, followed by loading with doxorubicin (DOX) and modification with bovine serum albumin (BSA). pH/near-infrared dual-responsive nanotheranostics was constructed for computed tomography (CT) and magnetic resonance (MR) imaging-induced collaborative cancer treatment. The mesoporous channel of SnO2 was utilized as a reservoir to encapsulate DOX, an antineoplastic drug, for chemotherapy and as a semiconductor photosensitizer for photodynamic therapy (PDT). Furthermore, the DOX-loaded UCNPs@SnO2-BSA nanocapsules combined PDT, Nd3+-doped UCNP-triggered hyperthermia effect, and DOX-triggered chemotherapy simultaneously and demonstrated prominently enhanced treatment efficiency compared to the monotherapy model. Moreover, tin, as one of the trace elements in the human body, has a similar X-ray attenuation coefficient to iodine and therefore can act as a contrast agent for CT imaging to monitor the treatment process. Such an orchestrated synergistic anticancer treatment exhibited apparent inhibition of tumor growth in tumor-bearing mice with negligible side effects. Our study demonstrates nanocapsules with excellent biocompatibility and great potential for cancer treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Doxorrubicina/farmacologia , Nanocápsulas/química , Fármacos Fotossensibilizantes/farmacologia , Nanomedicina Teranóstica , Compostos de Estanho/farmacologia , Animais , Antibióticos Antineoplásicos/química , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Raios Infravermelhos , Teste de Materiais , Camundongos , Camundongos Endogâmicos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Porosidade , Soroalbumina Bovina/química , Propriedades de Superfície , Compostos de Estanho/química
17.
J Mater Chem B ; 10(4): 506-517, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34988561

RESUMO

Near-infrared II (NIR-II, 900-1700 nm) fluorescence bioimaging with advantages of good biosafety, excellent spatial resolution, high sensitivity, and contrast has attracted great attention in biomedical research fields. However, most of the nanoprobes used for NIR-II fluorescence imaging have poor tumor-targeting ability and therapeutic efficiency. To overcome these limitations, a novel NIR-II-emissive theranostic nanoplatform for fluorescence imaging and treatment of cervical cancer was designed and prepared. The NIR-II-emissive dye IR-783 and chemotherapy drug doxorubicin (DOX) were encapsulated into liposomes, and the tumor-targeting peptide TMTP1 (a polypeptide with a sequence of cyclic ASN Val Val Arg Gln Cys) was conjugated to the surface of the liposomes to form IR-783-DOX-TMTP1 nanoparticles (NPs) via self-assembly methods. The IR-783-DOX-TMTP1 NPs showed strong NIR-II emission, excellent biocompatibility and a long lifetime in vivo. Furthermore, high-definition NIR-II fluorescence microscopy images of ear blood vessels and intratumoral blood vessels were obtained from IR-783-DOX-TMTP1 NP-stained mice with high spatial resolution under 808 nm laser excitation. Moreover, IR-783-DOX-TMTP1 NPs showed strong tumor-targeting ability and highly efficient chemotherapeutic characteristics towards cervical tumors. The novel targeting and NIR-II-emissive IR-783-DOX-TMTP1 NPs have great potential in diagnosis and therapy for cervical cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Indóis/farmacologia , Oligopeptídeos/química , Imagem Óptica , Nanomedicina Teranóstica , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Feminino , Células HeLa , Humanos , Indóis/química , Raios Infravermelhos , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias do Colo do Útero/diagnóstico por imagem
18.
Bioorg Med Chem Lett ; 60: 128583, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085720

RESUMO

Hypoxia imaging agents can play an important role in the tumor treatment by avoiding the worse effect of radiotherapy and chemotherapy due to the tumor hypoxia. Due to the small size and easy coordination, tricarbonyl technetium-99m can be used to label a wide range of imaging agents. In this work, the tricarbonyl 99mTc labeled small-sized hypoxia imaging agents containing 2-nitroimidazoles were prepared, which have different carbon chain lengths between cyclopentadienyl and 2-nitroimidazole, and which have one or two 2-nitroimidazole groups. The results of S180 cell experiment and biodistribution indicated that these molecules have different hypoxic selectivity. When contains one 2-nitroimidazole, as the carbon chain lengthens, which means the molecular volume becomes larger, hypoxia cellular uptake and selectivity decrease in S180 cell uptake experiment. In biodistribution study in mice bearing S180 tumor, Tc-2 (1-cyclopentadienyl-5-(2-nitro-1H-imidazol-1-yl)-pentan-1-one tricarbonyl 99mTc complex), which has intermediate carbon chain, is better due to the more complex factors. Its tumor/blood (T/B) ratio is 3.56 ± 0.25, tumor/muscle(T/M) ratio is 1.73 ± 0.29 and tumor uptake is 2.23 ± 0.24%ID/g at 2 h. Comparing to other tricarbonyl technetium complexes containing one 2-nitroimidazole, the complexes in this work have an advantage in tumor/blood ratio and tumor uptake. This suggests that the small-volume cyclopentadienyl may have an advantage when used as a ligand. When contains two 2-nitroimidazole groups, the complex, 1-cyclopentadienyl-5-di(2-(2-nitro-1H-imidazol-1-yl)ethyl)amino-pentan-1-one tricarbonyl 99mTc complex (Tc-4), has the better results in the cell experiment than those which contain one 2-nitroimidazole group. Thus the hypoxia imaging agent contains two 2-nitroimidazole groups is more advantageous, but further modifications of Tc-4 are needed to improve its clearance rate in the blood, because the increased lipophilicity leads to a decrease in the T/B ratio of Tc-4. In conclusion, small volume hypoxia imaging agents with two 2-nitroimidazole groups may be the trend of development.


Assuntos
Nitroimidazóis/farmacologia , Compostos de Organotecnécio/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Diagnóstico por Imagem , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Nitroimidazóis/síntese química , Nitroimidazóis/química , Compostos de Organotecnécio/síntese química , Compostos de Organotecnécio/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Relação Estrutura-Atividade , Distribuição Tecidual
19.
ACS Appl Mater Interfaces ; 14(4): 4914-4920, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35050579

RESUMO

Electrodynamic therapy (EDT) and chemodynamic therapy (CDT) have the potential for future tumor treatment; however, their underlying applications are greatly hindered owing to their inherent drawbacks. The combination of EDT and CDT has been considered to be an effective way to maximize the superiorities of these two ROS-based methodologies. However, the development of novel nanomaterials with "one-for-all" functions still remains a big challenge. In this work, the polyoxometalate nanoparticles (NPs) were decorated using the zeolite imidazole framework (POM@ZIF-8) in order to integrate the EDT with CDT. The resulting POM@ZIF-8 NPs can effectively induce the generation of reactive oxygen species (ROS) via a catalytic reaction on the surface of POM NPs induced by an electric field (E). At the same time, POM@ZIF-8 NPs can catalyze the intracellular H2O2 into ROS via a Fenton-like reaction, thereby achieving the combination of EDT and CDT. Besides, since ZIF-8 is acid-responsive, it can protect normal tissues and avoid side effects. Of great note is that the cytotoxicity and the apoptosis rate of the POM@ZIF-8+E group (80%) were found to be significantly higher than that of the E group (55%). As a result, a high tumor inhibition phenomenon can be observed both in vitro and in vivo. The present study thus provides an alternative concept for combinational therapeutic modality with exceptional efficacy.


Assuntos
Ânions/farmacologia , Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Imidazóis/farmacologia , Polieletrólitos/farmacologia , Zeolitas/farmacologia , Animais , Ânions/química , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Imidazóis/química , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Tamanho da Partícula , Polieletrólitos/química , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Microambiente Tumoral/efeitos dos fármacos , Zeolitas/química
20.
Bioorg Med Chem Lett ; 61: 128552, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051574

RESUMO

The transforming growth factor type ß receptor I (TGF-ß R1, also known as activin-like kinase 5 or ALK5) plays a significant role in the pathogenesis of multiple diseases such as malignant tumors and tissue fibrosis. Specific inhibition of ALK5 provides a novel method for controlling the development of cancers and fibrotic diseases. Herein, a novel series of 4-(pyridine-4-oxy)-3-(tetrahydro-2H-pyran-4-yl)-pyrazole derivatives was synthesized and identified as ALK5 inhibitors. Among them, compound 8h inhibited ALK5 autophosphorylation and NIH3T3 cell activity with IC50 values of 25 nM and 74.6 nM, respectively. Compound 8h also showed favorable pharmacokinetic profile and ameliorated hERG inhibition. More importantly, 30 mg/kg oral administration of 8h could significantly induce tumour growth inhibition in CT26 xenograft model without obvious toxicity.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Células NIH 3T3 , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Piridinas/síntese química , Piridinas/química , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...